Christmas Computing 🎄 Get Jolly Good at Coding

 Free Christmas Computing Resources

 

Our free Christmas computing resources help your pupils get jolly 🎅🏻 good at problem solving using key computational thinking skills such as abstraction, decomposition, generalisation and pattern spotting.

Computational thinking lies at the heart of the National Curriculum for Computing and our best selling (ERA and BETT nominated) schemes of work support schools teach it creatively and well.

Grab yourself a gift 🎁 with our free stuff for Christmas.   Visit www.icompute-uk.com for more free Christmas themed lesson plans and resources to support teaching primary computing.

christmas computing

Click to download

 

Join us for the Hour of Code™ 2018

The Hour of Code is Coming!

icompute hour of codeNot long to go now for the Hour of Code 2018 (December 3rd – 9th) and we can’t wait to see how many pupils and schools participate around the world.

HOCiCompute are delighted to partner with code.org again this year by providing lots of fun, creative, activities for schools to use as part of this event and throughout the year.  We’ve put together, free, Christmas themed lessons and lots more, including coding apps, sending secret messages with Morse Code, animating a snowman and saving Santa!  Included are detailed step-by-step lesson plans with built in differentiation and creative ideas for extension and enrichment.

The Hour of Code™ is a global movement and worldwide effort to celebrate computer science. Organised by Computer Science Education Week and Code.org it reaches tens of millions of students in 180+ countries through a one-hour introduction to computer science and computer programming.

In England, children have a statutory entitlement to a computer science education from the age of five. iCompute provides full coverage for the National Curriculum for Computing at Key Stage 1 and Key Stage 2.

Each year, iCompute offer free computing lesson plans and computing resources to support the Hour of Code™ and help raise awareness of and engagement in computing science around the world.

We really hope you join us this year for The Hour of Code and introduce your pupils to the joy of creative computing!

Save

Save

Save

Save

Save

Halloween 🎃 Computational Thinking Puzzles

Scarily 👻 Good Free Resources for Primary Computing

 

Help your pupils get dead ⚰️ good at problem solving using key computational thinking skills such as abstraction, decomposition, generalisation and pattern spotting with our free Halloween themed puzzles.

Computational thinking lies at the heart of the National Curriculum for Computing and our best selling (Educational Resources Awards nominated) series of Computational Thinking Puzzle books 1-4 help pupils independently practice the skills they learn in their computing lessons.

Grab yourself a treat 🍬 with our free puzzles for Halloween.   Visit www.icompute-uk.com for more free themed lesson plans and resources to support teaching primary computing.

 

Download a free Halloween Puzzle

Halloween Puzzle 2

Download a free Halloween Puzzle

 

Primary Computing with Sphero SPRK+

Coding with Sphero SPRK+ and Sphero Edu

 

This post follows on from a previous post detailing my experiences of teaching primary computing, coding with Sphero 2.0.  Following the successful loan of Sphero 2.0 from Lancaster University as part of my role as a Computing at Schools Primary Computer Science Master Teacher, my school bought a class set of Sphero SPRK+ to support teaching primary computing and use elsewhere across the curriculum.

The Sphero SPRK+ Edition is aimed at the education sector and includes the same sensors and electronics as Sphero 2.0 but, unlike the white shell, the clear polycarbonate material brings pupils closer to the robotic action. Children can immediately see the connection between the programs they create and how the insides of Sphero work and react.  Powered by Sphero Edu app, pupils can learn programming using drag-and-drop blocks and progress to coding using JavaScript.  I really like how making connections between the visual programming language (the blocks) and its text equivalent is literally at pupils finger tips: with just a tap, they can see how the block of code they are using is written in JavaScript code.  That’s great for progression in computer science.

Sphero Edu

Tap to see blocks written in JavaScript

 

 

Sphero SPRK+ is certainly more stable than Sphero 2.0.  Because they are equipped with Bluetooth SMART technology they are much easier to connect to devices and, thankfully, don’t require any of pairing and labelling that I needed to do with Sphero 2.0 for classroom management. Here, connections are made between your device and the robot simply by tapping them together.  That said, do check your devices are compatible with SPRK+ as they need Bluetooth 4.0 LE to work.  I found out only seven of our iPads at school work with my new set.  Luckily, we only have six Sphero but it could have been a very costly mistake!

Sphero SPRK+ has lights, sound and voice.  I made links to the work we had been doing in cryptography (iCompute, Year 5, iCrypto) studying Morse Code by using Sphero’s strobe blocks to flash lights representing the dits and dahs of letters in secret messages (changing colours between letters to make decoding easier).  For the solutions, the children then added speak blocks after each sequence of Morse code, which said verbally what the letters were.

Another great feature of the Sphero Edu app is being able to easily see (and export to other apps) Sphero’s live sensory data.  This is brilliant for cross curricular work, particularly maths and science.  Sphero is packed with sensors — gyroscope, accelerometer, location, etc… Pupils can see the real time value of sensors within Sphero Edu with visual graphs.  If you throw Sphero like a ball, pupils will see the accelerometer data rise and fall. Similarly, when they construct a maze, they can use the data to track location, distance, and speed.

Sphero Protractor

Click to download

Last, but not least, Sphero Edu with Sphero SPRK+ includes a Program Cam feature which allows pupils to take a videos or images of programs while they’re running. Pupils can narrate what they’re created, demonstrate their learning (and ultimately mastery) and share their work with a wider audience.

Pupils naturally love working with Sphero, they think they’re playing. Under the guise of play, they’re actually learning invaluable programming skills alongside learning about everything from physics to art!  That’s learning at its best.  The SPRK+ edition, combined with the Sphero Edu app, brings so much more to the table to support teaching and learning – particularly in STEM subjects.  They’re expensive but with the right blend planning and imaginative resources, using Sphero SPRK+ in your school can extend to all areas of the curriculum.

Ready to roll?  The possibilities are exciting!

Our school purchased six Sphero SPRK+ at full price.  I have produced lesson plans and resources for iCompute that use Sphero 2.0 and Sphero SPRK+ but am in no way affiliated with Sphero Inc.

 

sphero cover

Visit iCompute to find out more about primary robotics

 

 

 

 

 

 

 

 

 

 

Primary Computing – Cryptography Lesson Plans

Encryption & Decryption

Cryptography Enigma Machine

Click to Download

Cryptography

Since man first began writing there has been a desire to send messages in secret: in code.  Codes and ciphers are forms of secret communication. A code replaces words with letters, numbers or symbols.  A cipher rearranges letters or uses substitutes to disguise the message. This process is called encryption. The art of writing and solving codes and ciphers is called cryptography.

Codes and ciphers have been used throughout time when people wanted to keep messages private.  Cryptography has, and is still, used by governments, military, companies, and organisations to protect information and messages.

Today, encryption is used to protect data and data transfer between computers.  Documents, data and messages are encrypted to protect confidentiality.  Modern encryption methods are very clever but their underlying principles remain that of those ancient methods.

Cryptography Unit

I have written a 6 week unit introducing cryptography for iCompute for Primary Schools computing scheme of work.  Here, the children will unleash their inner spy and learn about how data can be transferred in secret over distances. They will learn how codes and ciphers have been used throughout history and explore a number of different ways that data can be encrypted and decrypted.

cryptography-enigma-lesson

As part of it, along with step-by-step lesson plans and pupil/teacher support materials, I’ve been putting together resources on the history of cryptography.  Download a brief introduction to the Enigma machine and how the magnificent men and women at Bletchley helped shorten World War II with their code breaking skills!  Practice secret code writing in your classroom by downloading our Morse Code Worksheet and Morse Code Decoder Wheel and make a cipher disk.  Lots of engaging activities to learn about encryption methods past and present and the importance of keeping data private in the modern digital age.

cryptography cipher wheel

Download Cipher Wheel

The new cryptography unit – iCrypto – is available now in our Whole School Computing Curriculum for the National Curriculum for Computing at Key Stage 2.

Visit www.icompute-uk.com to find out more about our acclaimed primary computing scheme of work.

Morse Code Worksheet

Download Morse Code Worksheet

Morse Code Worksheet

Download Morse Decoder

Cross Curricular Computing Lesson Plans

Enrich learning with a cross curricular approach to primary computing

CT Poster

Click to download the poster

Computing is one of the most fundamentally cross curricular subject areas in education.  It’s about using technology, logic, creativity and computational thinking to solve problems that cross all disciplines.  It requires the systematic breakdown (decomposition) of both the problem and the solution.  We need to prepare pupils for how to live in an increasingly digital world by equipping them with the knowledge, understanding and skills to solve as yet unknown problems using tools and technologies that do not yet exist.  We can work towards achieving this by using computing as a means of making sense of the world and using what the children learn in computing across the curriculum.

The best primary practice includes a blend of rigorous, discrete, subject teaching and equally effective cross curricular links.  Both approaches are needed for effective learning to take place, to enable children to make links between subjects and to set learning in meaningful contexts.  Using computing throughout the primary curriculum offers a way to enrich and deepen learning through engaging, interconnected, topics.

I have put together a selection of free resources and links to others to help teachers get started with ideas and inspiration for enriching learning and exploring computing through a rich variety of media and technologies in cross curricular contexts.

cross curricular computational thinking

Click to download poster

Computational Thinking

http://icomp.site/cthink

 

 

 

 

 

Cross Curricular computing

Free Cross-Curricular Computing Planning

http://www.icompute-uk.com/hoc

 

 

Cross Curricular Podcasting

Podcasting

Podcasting

http://icomp.site/podcast

 

 

 

 

cross curricular CT Diary

Click to Download

Free Computational Thinking Diary

http://icomp.site/diary (Download)

 

 

 

 

Cross curricular QR Codes

QR Codes enable mobile learning

QR Codes in the Classroom

http://icomp.site/qr

 

 

 

 

 

Cross curricular Robotics

Robotics

Robotics

http://www.icompute-uk.com/hoc

 

 

Visit www.icompute-uk.com to find out more about our highly acclaimed comprehensive primary computing schemes of work and cross curricular computing pack.

Save

Primary Cryptography

Encryption and Decryption

Enigma Factfile

Click to download

Since man first began writing there has been a desire to send messages in secret: in code.  Codes and ciphers are forms of secret communication. A code replaces words with letters, numbers or symbols.  A cipher rearranges letters or uses substitutes to disguise the message. This process is called encryption. The art of writing and solving codes and ciphers is called cryptography.

Codes and ciphers have been used throughout time when people wanted to keep messages private.  Cryptography has, and is still, used by governments, military, companies, and organisations to protect information and messages.

Today, encryption is used to protect data and data transfer between computers.  Documents, data and messages are encrypted to protect confidentiality.  Modern encryption methods are very clever but their underlying principles remain that of those ancient methods.

I’m writing a unit of work on cryptography which will be published to iCompute for Primary Schools computing scheme of work.  Here, the children will unleash their inner spy and learn about how data can be transferred in secret over distances. They will learn how codes and ciphers have been used throughout history and explore a number of different ways that data can be encrypted and decrypted.

As part of it, I’ve been putting together resources on the history of cryptography.  Here is a brief introduction to the Enigma machine and how the magnificent men and women at Bletchley helped shorten World War II with their code breaking skills!

The new cryptography unit – iCrypto – is available now!  Visit www.icompute-uk.com to find out more about our acclaimed primary computing scheme of work.

Join us for the Hour of Code™ 2017

The Hour of Code is Coming!

HOC 2017Not long to go now for the Hour of Code 2017 (December 4th – 10th) and we can’t wait to see how many pupils and schools participate around the world.

HOCiCompute are delighted to partner with code.org again this year by providing lots of fun, creative, activities for schools to use as part of this event and throughout the year.  We’ve put together, free, Christmas themed lessons and lots more, including saving Santa with Scratch, animating a snowman and delivering Santa’s presents with parrot drones!  Included are detailed step-by-step lesson plans with built in differentiation and creative ideas for extension and enrichment.

The Hour of Code™ is a global movement and worldwide effort to celebrate computer science. Organised by Computer Science Education Week and Code.org it reaches tens of millions of students in 180+ countries through a one-hour introduction to computer science and computer programming.

In England, children have a statutory entitlement to a computer science education from the age of five. iCompute provides full coverage for the National Curriculum for Computing at Key Stage 1 and Key Stage 2.

Each year, we offer free computing lesson plans and computing resources to support the Hour of Code™ and help raise awareness of and engagement in computing science around the world.

We really hope you join us this year for The Hour of Code and introduce your pupils to the joy of creative computing!

Save

Save

Save

Save

Save

Primary Robotics

Teach Controlling Physical Systems

primary robotics

iCompute’s Primary Robotics Pack

I’ve been teaching primary robotics for some time now as part of the computing curriculum that I write for iCompute.  I teach with and have produced schemes of work for robotics from EYFS to Year 6 using BeeBots, LEGO WeDo, Sphero and parrot drones to name a few.

Whilst teaching computing itself can be daunting for many teachers, the prospect of the added pressure of actual things being whizzed around classrooms through code can push many to avoid the controlling physical systems aspects of the National Curriculum for Computing altogether!

The rapid pace of advances in technology means children are growing up in an age dominated by embedded computer systems and robotics. It is crucial they have an understanding of its impact on the world and their own futures.  Teachers need to be in a position to provide pupils with the level of knowledge, understanding and skills they need to live in the modern world.

Including Science, Technology, Engineering, and Math (STEM subjects) in early education provides a strong motivation for learning and an improvement in progression.  Teaching robotics is a great way of  connecting with children and enables schools to engage the potential engineers and computer scientists of the future.

Most curricula in primary schools cover science and mathematics, but we need to do more in teaching problem solving, computer science, design, technology and robotics.

The use of robotic systems and robotics as a subject offers an introduction to the  engineering design process and sets children’s learning in a fun, meaningful, contexts.  The fundamental principles of computer science are applied and made easier as models and devices can be designed, constructed, programmed and executed in front of pupil’s eyes.  This makes it much easier to learn what robots can and cannot do: their capabilities and, crucially, their limitations.

We’ve recently put all of our robotics units into one primary robotics pack that covers the controlling physical systems aspects of the National Curriculum for Computing at Key Stage 1 and Key Stage 2 (pupils aged 5-11).

I’m also including some free activities as part of our contribution to this year’s Hour of Code, adding to those already featured last year and still live.  As the Hour of Code launches each year in December, I’ll be adding a nice festive twist to my teacher-led activities. Hint: Santa’s sleigh is broken but he has a drone!  Here’s a sneak peek of the cover…

HOC iFly

HOC iFly Cover

Check out my other blog posts for teaching tips and advice about how to manage programming physical devices with younger children. I cover:

Sphero

LEGO WeDo

LEGO WeDo Classroom tips

Parrot Drones

The primary robotics pack is now available to purchase from iCompute.

Save

Save

Save

Save

Save

Save

Save

Save

Save

Planning Computing

How to plan a Primary Computing Scheme of Work

 

iCompute Primary Computing Scheme

Primary Computing Scheme

Many teachers are tasked with planning computing schemes of work for their schools.

Having produced many for iCompute, I know how huge and time consuming the task is.  Here I share my tips about how to plan a computing scheme of work which ensures your school has a broad, balanced, rich and progressive scheme of work that will engage and challenge pupils of all abilities.

computing progression

  1. Use free software and tools – you don’t need to buy a thing in order to meet the objectives of the computing curriculum
  2. Practice – helps you understand the knowledge, skills and understanding the software and tools help develop
  3. Look for progression – you will start to see that particular tools are suitable for specific age groups
  4. Look for full coverage – Computing is not just about coding
  5. Understand how to assess computing – know where your pupils are and where they need to go next
  6. Adapt – make it fit your school, staff and needs of your pupils

Read on to find out more about each stage … Continue reading

Computing with LEGO™ WeDo – Classroom Tips

Physical Programming

I recently published two new 4-6 week physical programming units to iCompute’s Key Stage 2 scheme of work; which I blogged about in my post Teach Programming with LEGO™ WeDo

I admit to a rising sense of panic as I approached my first session: young children, small LEGO parts, computers and stuff that moves!  However, we’ve been having a great time and thought I’d share some of the practises I’ve found necessary to manage these very active learning lessons.

First of all, get organised before each session.  I’ve found it’s much better to work on the floor to prevent bouncing bricks, so book out the school hall if you can or clear your classroom of desks.  I’ve assigned each pair of pupils a LEGO WeDo Construction kit and a labelled basket for their models.  I also arranged space in the classroom for a ‘robot parking lot’.  Whenever I need everyone’s attention, or if we’ll be working on the same model a few weeks in a row, we park the robots in their baskets on top of the construction kit boxes.  This helps keep the kits organised so that, combined, the model and the kit = a full construction kit.

You need to be really firm about pupil movement around the space you’re using with LEGO parts!  I use hula-hoops placed around the hall with big gaps between them.  I explain the necessity of keeping the models and construction kits within hoops to that we don’t lose the parts.  The children have been great, understanding the clear rules and why we have them.

pupils-with-lego

Organisation is key!

In order to work on the floor, you’ll need either laptops or tablets.  If you don’t have either, the children can transport their models in their baskets (always with their kits) to the desktops; but make sure they have plenty of space between them to program and operate the models.

I used the amazing LEGO Digital Designer to put together building instructions as a basis for each of the models the children would be making and programming.  Don’t worry, you won’t have to if you are an iCompute school because I’ve done all that for you.  Simply print and hand out to the children.  If you fancy having a go yourself, you can virtually construct a model of your choosing and then opt to create the build instructions which your can display in a web browser or print.  Love it!

LEGO Build Instructions

Build Instructions for LEGO WeDo

Whilst build instructions can be vital for some pupils, there are still plenty of opportunities for creativity  for others and I allow those the freedom to design, create and program their own models with only a rough guide.

I’ve been really impressed with how well the children have responded to physical programming and how smoothly the lessons have gone.  I hope some of you find my tips useful and please let me know how your lessons go.

Save

Save

Teach Programming LEGO™ WeDo with iCompute

Build and Code with LEGO™ WeDo

LEGO™ WeDo This week sees the launch of iCompute’s new six week programming unit  for Year 3 and 4-5 week unit for Year 4 which uses LEGO™ WeDo to teach children how to program robots and models in primary computing lessons.

This helps schools address the controlling physical systems objective of the National Curriculum for Computing at Key Stage 2.

What is LEGO WeDo?

Lego WeDo is a fantastic opportunity for children to bring the physical world to life through code.  They build models using the bricks they know and love and then program them interact with the world around them!

Using robotics promotes interest in science and engineering, as well as computer science and helps develop motor skills through model building.  Mechanisms, built by and ultimately designed by, the pupils themselves set computer programming in a meaningful context.  Children learn more quickly when a model executes a program, physically, right before them.

The robotics elements of LEGO WeDo include motors and sensors.  Our new units do not require the full educational LEGO WeDo sets to be bought.  Schools that already have plenty of bricks and parts can simply buy the robotics parts that will enable models to move, sense and interact with the physical world.

Robotic Parts

LEGO WeDo has two versions 1.0 and 2.0.  Our units provide support for both and the principle robotic parts remain the same at their core (albeit with enhanced features for 2.0).

  • The Hub: The WeDo hub connects models to your device. You can connect up to two sensors (motor, distance sensor, or tilt sensor)
  • The Motor: When connected to the hub, the motor can be programmed to turn on/off.  It can also be programmed to adjust power, direction and duration
  • The Distance Sensor: The distance sensor can detect how far away an item is in front of it
  • The Tilt Sensor: The tilt sensor detects how far it’s tilted from left to right.

You can also connect and program LEGO Power Function lights which do not come with WeDo packs as standard but can be bought on their own and connected to the hub too.

As already mentioned, you can buy the robotic parts separately if you have plenty of LEGO bricks; however it is still possible to pick up education sets of WeDo 1.0 at a fraction of the price of WeDo 2.0.  Search online for LEGO™ Education WeDo Construction Set 9580 (make sure it’s the construction set you are buying).  I managed to buy 6 sets of WeDo 1.0 at £70 each compared to £150 each for LEGO™ Education WeDo 2.0 Core Set 45300.

Programming LEGO™ WeDo

iCompute uses MIT’s Scratch to program models.  LEGO WeDo does have it’s own software that comes as part of the kit, but I don’t feel it offers the same opportunities for enhancing physical programming through storytelling so have chosen to use Scratch instead.

There are two versions of Scratch: 1.4 and 2.0.  Scratch 1.4 is an offline editor that you download and use without the need for web access.  Scratch 2.0 is available as both an online and offline version.  Regular readers will know that I prefer 1.4 for primary aged pupils as the interface is cleaner and the debugging options are better.  Scratch 2.0 however does allow models to be connected to tablets, as well as computers.  You can use both versions of WeDo with Scratch 2.0, however you need to install a device manager and extension in Scratch 2.0 for them to work.

The teacher guides contained within the unit provide comprehensive guidance on the options and their respective setups.

Using Scratch and LEGO WeDo enables pupils to create some amazing models and stories to accompany them.

What Pupils Can Do with LEGO™ WeDo and iCompute

  • Programming, using software , designing and creating working models
  • Using the software to acquire information
  • Using feedback to adjust a programming system output
  • Working with simple machines, gears, levers, pulleys, transmission of motion
  • Measuring time and distance, adding, subtracting, multiplying, dividing, estimating, randomness, using variables
  • Doing narrative and journalistic writing, storytelling, explaining, interviewing, interpreting
  • Design: Use STEM principles to explore Science, Technology, Engineering & Mathematics and design models
  • Build: Improve motor function, communicate and collaborate with others in building working models and robots
  • Program: Create animated stories, and program models to interact with the story & physical world
  • Digital Literacy: Create factual and imaginative animations and narratives that explain, interpret and tell stories
  • Test : Use physical output as feedback to to detect errors easily
  • Debug: Correct errors found when models don’t behave as expected
  • Evaluate: Critically analyse work and that of others and discuss what is good, or not so good, about them
  • Improve: Revisit models and code then cycle through this process from ‘Design’ onward to make things better

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

KS1 Computing with Scratch Jr

Learning to Program with Tablets & Scratch Jr

KS1 Computing Support Card

iCompute Pupil Support Card

Introduce your KS1 computing pupils to algorithms and programming in a fun, intuitive way, using Scratch Jr on tablets.  I’ve put together a 6-8 week KS1 computing unit and associated teacher/pupil resources that uses Scratch Jr and am struck by just how quickly my pupils pick up some of the fundamental principles of computer science.

I based the unit around Michael Rosen’s “We Going on a Bear Hunt” to give the children’s coding context and purpose.  Over the weeks the children move progressively from adding sprites and programming some basic movement to programming sprites to go a more complex journey in the form of a hunt – just like in the story.  The concepts covered that I found they grasped really quickly are:

  • Understanding and developing algorithms
  • Programming: sequence, selection and repetition
  • Computational Thinking: logical thinking; abstraction; decomposition; generalisation; recognising patterns & relationships
  • Testing & Debugging

Alongside that, the children learn to work collaboratively, develop digital literacy skills as well as persistence and resilience in problem solving.

KS1 Computing Lesson Plan

Snippet of iCompute Scratch Jr Lesson Plan

You can download our glossary of computing terms for help with any of those concepts.  I’ve also created a periodic table of Scratch Jr blocks which have editable blocks use in unplugged computing activities, and some basic blank Scratch Jr blocks for cutting/sticking activities which help support learning.

There are many creative ways to plan primary computing using Scratch Jr and I’m looking forward to starting another unit for our iPad scheme of work very soon!

Scratch Jr is a free app, with a drag and drop interface for visual programming, developed by MIT and available for tablets on the App Store, Google Play, Chrome Store and Amazon

Get it now and get creative in your KS1 computing classrooms.

 

Save

Save

Save

Christmas Computing Activity

Create an Animated Snowman this Christmas

Christmas Animated Snowman Lesson

Click to download the lesson and resources

Christmas Animated SnowmanEveryone likes putting a festive twist on lessons during the approach to Christmas and I’ve been making festive computing lessons for my pupils.

I’ve recently produced a six week animation unit for Key Stage 2 (iAnimate) where the children learn about the history of animation, make their own flipping book animations, make thaumatropes and/or praxinoscopes, explore different animation techniques and, of course, design and make their own fantastic animations using apps and software.

This Christmas, I’ve put together a step-by-step computing lesson plan and teacher resources for creating an animated snowman GIF.  You can download the lesson and resources and use them your own classrooms for a little festive fun!

Christmas animated GIF

Create an animated GIF

The lesson plan contains lots of ideas for differentiation, extension and enrichment: from making a very simple animated sequence to more able pupils:

  • animating backgrounds as well as characters and objects
  • adding 3D effects (e.g. shadows)
  • creating more frames for smoother movement
  • switching backgrounds to create scene changes
  • animating more than one object

A little festive flavour of what our full six week animation unit offers and another Christmas gift to you!

 

Save

Save

Save

Save

Save

Save

Primary Computing and Digital Literacy

Digital Literacy in Primary Schools

Digital Literacy

Teaching Digital Literacy

Now that Computing has been statutory in primary schools since the introduction of the National Curriculum for Computing at Key Stage 1 and Key Stage 2 in 2014, many schools feel that they have got to grips with the objectives and have a view, if not a plan, of how to meet them.  With computer science being at the core of the curriculum, its perhaps easy for schools to neglect the other aspects of it – including digital literacy.

Continue reading

Screencasting in the Classroom

A Powerful Tool for Assessment

I’ve covered a number methods for primary computing assessment in this post but, as I’ve been creating some pupil/teacher resources for video screencasting using, free, OBS (Open Broadcaster Software), I thought I’d go over the screencasting part of it again here.  You can download the pupil/teacher support card by clicking on the image in this post.

Potentially one of the most powerful tools for assessment in computing is engaging pupils in creating screencasts – recording computer screen video with audio narration.  Research indicates that by making learning visual and documenting thinking – through screencasting – pupils more naturally engage in self-assessment.  Even when recordings are made without any intended audience and in the absence of prompting, pupils automatically listen back to themselves, reflect, assess and adjust (Richards, 2014)

This promising tool could be used to further develop information technology and digital literacy skills whilst also engaging pupils in the assessment process by editing screencasts for an intended audience with audio and creating visual effects such as captioning.  The screencasts could then be uploaded to individual or class blogs, using categories and tags mapped to the appropriate strand of the National Curriculum for Computing, as evidence of learning or saved as a video file for storage on file servers either at school or in the Cloud.  Similarly, teachers could use screencasts to provide audio/visual pupil feedback by making recordings when reviewing work.  The screencasts could be cross-referenced against a project and uploaded into the pupil’s e-Portfolio.

screencasting card

Click to Download

 

References:

Richards, Reshan. One Best Thing. iBooks, 2014. eBook [Available here]

Save

Save

Save

Save

Save

Primary Computing Glossary

Computing Glossary of Terms

We Computer Scientists like our jargon but now (due to the National Curriculum for Computing) we are teaching pupils as young as five about how computers and computer systems work; teachers need to know – and be able to explain to children – what a plethora of confusing words mean.  As Kurt Vonnegut observed “if you are going to teach, you should either teach graduate school or fourth grade… and if you can’t explain it to fourth graders, you probably don’t know what you’re talking about.

Here I’ve put together a computing glossary of terms that I hope are useful to computing teachers and are used in iCompute’s primary computing schemes of work.

iCompute Glossary

Click to Open/Download

Save

Save

Save

Save

Save

Primary Computing Curriculum Coverage

Have you got it covered?

The primary computing curriculum has now been statutory since September 2014 with the introduction of the National Curriculum for Computing at Key Stage 1 and Key Stage 2.  All schools should now be teaching a broad and balanced computing curriculum that provides full curriculum coverage of the aims and objectives of the National Curriculum for Computing.  But are they?

computing-covered

Think you’re “doing” Computing?

 

Continue reading

iCompute with Sphero – Free Primary Computing Lesson Resources

Teach controlling physical systems

As I mentioned in a previous post, I have recently written a primary programming robotics scheme of work as part of my role as a primary computing master teacher with Computing At Schools and having been kindly loaned five Sphero.  @cas_lancaster will be lending these lesson plans and resources out as part of their equipment loan scheme and the complete unit and associated resources, assessment guidance etc, now forms part of the iCompute for iPad scheme of work.

Today, I presented at #CASLancaster16 conference about my experiences of teaching with Sphero.  Check out my posts elsewhere on this blog for tips on teaching with physical systems and visit iCompute Free Stuff to download the free robotics resources I contributed to support The Hour of Code.

Also, check out this post which is an updated version of my teaching experiences with Sphero SPRK+ Edition.

sphero cover

Visit iCompute to find out more about primary robotics