Free Valentines Day Coding Lesson

Cupids Arrow

Valentines Day – Spreading the Love with Code!

Play and code this Valentines day with our free coding activity: a romantic themed Cupid game for pupils aged 7-11 using Scratch.

Throughout the year, I create free themed computing lessons, and I’ve written another step-by-step lesson plan and some teacher/pupil computing resources that I’m using in my computing classes and am adding to iCompute to celebrate Valentines Day.

Love is in the air but Cupid needs a little help aiming his arrow!  Challenge your pupils to program Cupid’s bow to respond to user input and aim to catch the heart of a love interest.

Valentines Day Coding Game

 

Ideas for differentiation, extension and enrichment are included in the lesson plan.  Plus program templates and partially-written programs for teacher and pupil support. Lots of opportunities to be inspired and get creative!

 

Check out my other free themed primary computing lesson plans by visiting icompute-uk.com/free-stuff

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Editable & Printable Scratch Blocks

Scratch Classroom Display & Unplugged Activities

iCompute Scratch 3.0

Scratch 3.0 Blocks

This version is for Scratch 3.0 and includes all category blocks along with Extensions: Microbit, Makey Makey, Video Sensing, Pen, LEGO WeDo, LEGO EV3, Music, Text to Speech and Translate.

Available to download by clicking/tapping the Periodic Table of Scratch 3 Blocks image (see below).  The blocks can be edited and scaled using image editing tools (e.g. Illustrator, Inkscape, Vectr).  The blocks are also provided in .png format.

It’s important that children be given opportunities to interact with physical programming blocks to help them understand both their function and the underlying concepts.  I use them in groups for the children to program me and/or each other as well as programming using Scratch 3 itself.

Scratch Blocks

Click to Download

Published by iCompute and licensed under a Creative Commons license (CC BY-NC-ND 4.0) – Attribution-NonCommercial-NoDerivatives 4.0 International.

Also available in the same format are Scratch 2.0 blocks and Scratch Jr blocks from this post.

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Ofsted Inspection Framework: for Computing Subject Leaders

Inspecting Computing

The Ofsted Inspection Framework [3] came into effect in September 2019.  With the emphasis on ‘offering a curriculum that is broad, rich and deep’, here I take a look at its implications for Computing Subject Leaders.

Download my full guide on how iCompute can help your school demonstrate a quality computing education through the ‘Three I’s’ and during a Deep Dive.

Continue reading

Developing Computational Thinking

Preparing The Next Generation of Problem Solvers

Computational Thinking

Computational Thinking

A high quality computing education equips pupils to use computational thinking and creativity to understand and change the World” (DfE)

Computational Thinking lies at the heart of the National Curriculum for Computing.  Here, I look at what Computational Thinking means and how teachers can help pupils develop effective problem solving skills that can be applied in all areas of life.

Computational Thinking is about transforming a seemingly complex problem into a simple one that we know how to solve.  It involves taking a problem and breaking it down into a series of smaller, more manageable parts (decomposition). Each part can then be looked at individually, considering similarities between and within other problems (pattern recognition), and focusing only on the important details whilst ignoring irrelevant information (abstraction). Next, looking for solutions to other problems and adapting them to solve new problems (generalisation).  Then, simple steps or rules to solve each of the smaller problems can be designed (algorithms).  Once we have a working solution, we then use (evaluation) to analyse it and ask – Is it any good ? Can it be improved? How?

Teaching computational thinking is not teaching children how to think like a computer.  Computers cannot think.  Computers are stupid.  Everything computers do, people make happen.  It’s also not teaching children how to compute.  It’s developing the knowledge, skills and understanding of how people solve problems.  As such, it absolutely should not be confined to computing lessons and should be used throughout the curriculum to approach and solve problems and communicate and collaborate with others.

iCompute’s computational thinking puzzles for primary pupils are a ground-breaking new development in primary education. In the digital age, the benefits of computational thinking throughout education are increasingly being highlighted. Our, colourful, engaging and challenging puzzles are designed for children aged 7-11 to independently practise and develop the fundamental computational thinking skills that lie at the heart of the National Curriculum for Computing.  The puzzles help develop skills of decomposition, abstraction, generalisation and designing algorithms. This means children can find solutions and apply those already found to different problems, in different contexts. All of this helps lay the foundations for them to become effective problem solvers.

Solving puzzles leads to important outcomes including challenge, a sense of satisfaction, achievement and enjoyment. Puzzles rouse curiosity and hone intuition. Our carefully constructed computational thinking puzzles – designed by a computer scientist, software engineer and computer science master teacher – provide challenge, insight and entertainment all of which increase pupil engagement and promote independent learning.

Puzzles help children develop general problem-solving and independent learning skills.  Engaging in puzzles means that pupils:

  • use creative approaches
  • make choices;
  • develop modelling skills;
  • develop persistence and resilience;
  • practice recognition of patterns and similarities, reducing the complexity of problems

 Pupils use, applying and develop the following aspects of the National Curriculum for Computing:
* Logical reasoning
* Decomposition – splitting problems down into smaller problems to make them easier to solve
* Abstraction – taking the detail out of a problem to make it easier to solve
* Generalisation – adapting solutions to other problems to solve new ones
* Pattern recognition – spotting patterns and relationships
* Algorithms – finding the steps that solve a problem
* Evaluation – looking critically at a solution to determine if there’s a better way to solve it
* Testing – checking whether a possible solution works
* Debugging – finding problems with a solution and fixing them

Our puzzles are designed for independent pupil work and provide pupils with handy tips on how to approach the problems and challenges. They also make clear links between the puzzles being approached, the skills being developed and the relevance of both not just in computing but the wider world. This enables pupils to make clear links between subjects and helps pupils make meaning of their learning.

See this post for an example of the puzzles.

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Editable & Printable Scratch Jr Blocks

Scratch Jr Blocks for Display & Computing Unplugged

I’ve created editable, scaleable, Scratch Jr blocks for you to download and use in your coding lessons.  Click/tap the Periodic Table of Scratch Jr blocks image (see below).  The blocks can be edited using image editing tools (e.g. Illustrator, Inkscape, Vectr).  They are also included in .png format for printing.

It’s important that young children have the opportunity to interact with concrete materials (i.e. printed Scratch blocks) to help them understand both their function and the underlying concepts.  I use them in groups for the children to program me and/or each other before moving on to programming using Scratch Jr itself.

I’ve also made a full set of Editable, Printable Scratch 2.0 blocks, and Scratch 3.0, in other posts, which you can also use.

Scratch Jr Blocks

Click/Tap to download

Published by iCompute and licensed under a Creative Commons license (CC BY-NC-ND 4.0) – Attribution-NonCommercial-NoDerivatives 4.0 International.

Save

Save

Save

Save

Save

Primary Computing Knowledge Organisers

With Ofsted focus now on pupils acquiring and retaining subject knowledge, many schools are now using Knowledge Organisers in the classroom.

What are they?

A knowledge organiser is a document containing key facts and information that pupils can use to help acquire basic knowledge and understanding of a topic or concept.

Most will include:

  • key facts presented in a format that is easy to take in
  • key vocabulary or technical terms and what they mean
  • images such as charts or diagrams

What they include depends on the subject. In Computing, for example, a ‘Programming’ knowledge organiser includes definitions of sequence, selection and repetition along with images of Scratch blocks given as examples.

New for 2022: We’ve added ‘Sticky Knowledge’ resources too!

computing knowledge organisers

How can we use them?

There are lots of different ways they can be used in the classroom but here are some ideas:

  1. Use the knowledge organiser for regular revision and assessment. Create mini quizzes
  2. Use them for discussion; talk through them and ask higher-level ‘why’ questions to stretch and challenge
  3. Identify gaps in knowledge and understanding
  4. Determine whether the children know more than the knowledge organiser contains and encourage them to make their own additions
  5. Improve teacher subject knowledge
  6. Link knowledge organisers to enable children to make links between topics. For example, draw comparisons between an ‘Algorithms’ unit and a ‘Programming’ unit. What concepts/vocabulary are the same?
  7. Use the them as a handy vocabulary reminder. Keep them accessible and encourage the children to use the correct vocabulary when discussing their work

Get Primary Computing Knowledge Organisers

If you have a current iCompute Primary Computing Curriculum licence, we have uploaded knowledge organisers for all of our KS1 and KS2 primary computing units to iCompute online; providing coverage for all strands of the National Curriculum for Computing at Key Stage 1 and Key Stage 2.

If not, you can download a template to adapt for your own use here.

Coding Drones

Aiming High in Computing

Drone Lesson Plans

Aim High in Primary Computing

Using drones in schools has the potential to take learning, literally, to a higher level.  As they continue to become increasingly practical, attainable, tools for education, teachers around the world are now using drones in their classrooms for STEM and STEAM activities.

In computing, programming drones helps develop children’s skills in algorithms, programming and computational thinking as well as addressing the ‘controlling physical systems’ objectives of the National Curriculum for Computing at Key Stage 2.  Exciting curricula and drone lesson plans are being developed that help teachers develop confidence and make the most out of connected devices.

Drones are revolutionising business and industry:  engineers use the technology for site surveys, filmmakers capture images that would otherwise be unseen, drones are used in agriculture; farming; conservation; military operations and parcel deliveries.  The potential for the application of drones and the rapid growth in the technology is huge.  Understanding how they work, their potential and how to control them through coding prepares children for the modern working world.

iCompute lead the way in teaching and learning using educational technology.  In anticipation of 3D robotics becoming the next big thing in education, we have extended our connected devices offering of comprehensive, step-by-step lesson plans, computing resources and assessment toolkits using Sphero and LEGO™ WeDo by adding an amazing, creative, 6-8 week coding with drones unit aimed at upper KS2 Computing (pupils aged 9-11 or higher).

Children learn how to program mini drones to fly, create aerial shapes, navigate obstacles, fire ‘missiles’, pick up and drop objects all set in imaginative contexts.  They program Santa’s ‘sleigh’  to deliver presents before going on an epic journey to a Galaxy Far, Far Away to take out the Death Star for the Rebel Alliance!

Drone Lesson Plans

The Force is Strong with This One…Visit our website to unleash your power!

We have a limited number of class packs of Parrot Mini Drones available to purchase at iCompute.  Visit www.icompute-uk.com/purchase/purchase-2.html to find out more.

Save

Save

Save

Save

Save

Save

Save

New Periodic Table of Primary Computing Resources

New Year, New Tech

Computing Resources

Some schools have been teaching primary computing since its introduction into the National Curriculum in 2014 and some have yet to really get going.  Either way, the very nature of Computing is that things change rapidly and it’s time to start doing something new.

One of the things I like best about Computing is that you can’t churn out the same old lessons year on year.  Technology’s rapid development demands we pay attention to change; that we learn; that we adapt and, most importantly, that we create.

We owe it to our pupils to keep abreast of pedagogical and technological change.  I’ve put together a selection of the fantastic computing resources, tools and technologies that I use to teach Computing, some of which you’ll know but lots of which I hope are new and you’ll give a go.  I’ve turned it into a periodic table of primary computing resources, now with hyperlinks!  I keep banging on about this but Computing is more than just coding and lots of the resources listed here are for you to use with your pupils to teach the other strands of the curriculum (digital literacy, information technology and eSafety) as well as to use with cross curricular approaches.

Periodic table of primary computing apps

Click to download

 

 

 

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

There are many, many, more and I’d love to hear how you have been getting on teaching computing in your classrooms as well as hearing about the resources you’ve been using.

Our primary computing schemes provide full, progressive, step-by-step, lesson plans and all associated lesson resources and worksheets using the tools and computing resources included in the table.  Visit our website for more information.

Primary Computing – Celebrate Ada Lovelace Day!

The Magnificent Ada Lovelace

iCompute Ada Lovelace Activity

Click to download

Ada Lovelace had it worse, but as one of the few women undertaking a Computing Science degree in the 90’s, I’m used to being a minority.  I’ve never understood why it is such a male dominated industry because I love it.  I don’t put this down to sexism.  Throughout my studies and beyond in the workplace as a software engineer and, later, project manager I have been treated with respect at all times by men in my field.

I have my own theories about why girls don’t take to computer science as wholeheartedly as their male counterparts and they are, in my opinion, largely down to teaching – or lack thereof.  Which is why it’s great that, here in the UK, learning computer science is statutory from the age of 5 because it allows us teachers the (almost unique) opportunity to engage girls early in this creative and fascinating subject.  Not just enabling them to enter into the tech industry later if they want to but because it’s absolutely crucial to know how to communicate, collaborate and express yourself in the modern digital world.

In her blog post of 2009 (when Ada Lovelace Day was born) Suw Charman-Anderson speaks of research pointing to need for women to need to see female role models.  If that’s true then, given the amount of women teaching computing in the UK, we should surely see an upsurge in engagement in computing by girls and, empowerment through it!  That is, if their role model’s are good ones; who show a passion and enthusiasm for the subject and teach it in creative, fun and challenging ways.  I hope that, since its introduction into the National Curriculum in 2014, we are making good strides towards achieving this.  There’s no excuse not to as there is a wealth of support and resources available to support teachers and schools.  I regularly produce free lesson plans and support materials to, hopefully, inspire and motivate teachers of primary computing.

This Ada Lovelace day (13th October 2020) I’ve put together a step-by-step lesson plan and supporting resources adapted from iCompute’s Cross Curricular Computing pack for teaching Computing with History.  Suitable for pupils aged 7-11, it involves researching Ada Lovelace and producing a webpage about their findings using basic HTML.

Download and use to show your pupils how women have been instrumental in the transformation of the technological world!

Save

Save

Save

Save

Save

Teach EYFS Computing – Computing in the Foundation Stage

EYFS Computing

Laying Solid Foundations for Primary Computing

EYFS ComputingOur children grow up surrounded by technology. Their everyday interactions and experiences involve it, whether that is inside their homes, at school, out shopping or playing. EYFS Computing - BETT Awards 2018

Their world is an ever-changing digital world. We owe it to our children to prepare them for living in it.  It is never too early for children to start learning the fundamental principles of computer science because, as Edsger Dijkstra famously pointed out “Computer Science is no more about computers than astronomy is about telescopes” (attrib) .

Much of computing as a subject can be learned without using computers at all. Primary aged pupils are perfectly capable of understanding and executing algorithms. They do so every day: they use algorithms to solve problems in mathematics, learn letter sounds, spell, use grammar – I could go on and on! Algorithms are designed and can be applied in a myriad of different situations.  Understanding them has become a core skill because, increasingly, the world we live in is governed by them.

Computing is much more than the computer, the device or the tool. It’s about developing computational thinking skills (more on that in this post) so that our children can become effective, analytical, problem solvers. It’s also about equipping children with an understanding about how computers and computer systems work so that, combined, they develop transferrable skills which will enable them to design, develop or even just adapt to new tools and technologies in this ever changing digital age.  But much more importantly, they develop digital literacy: the ability to be able to express themselves and communicate ideas using tools and technology and participate fully in the modern digital world.

The best practice for Computing in the Early Years (EYFS computing) is where activities:

  • are imaginative and fun
  • challenge
  • involve being creative
  • require collaboration and sharing
  • involve listening, understanding, following and giving instructions
  • encourage describing, explaining and elaborating
  • encourage investigation
  • involve problem solving
  • include lots of ‘unplugged’ activities: computing without computers

By offering your children an imaginative, engaging, introduction to computing you help them make solid steps towards understanding the world.

iCompute’s expertise and innovation in teaching & learning with, and about, technology has been recognised by BETT and BESA with iCompute in the EYFS being nominated for two awards.  Find out what BESA (chair of the judging panel) has to say about the finalists:

iCompute ERA Awards 2017

iCompute BETT Awards 2018

icompute-schemes

Click to find out more

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Primary Computing Assessment

Computing Tests & Tasks

 

Computing Assessment Sample

Click/Tap to download

iCompute’s Computing Assessment Tests and Tasks – designed to complement our comprehensive Primary Computing Schemes of Work and existing assessment toolkit – is out now.

Developed by our author – a computer scientist and primary computer science master teacher – the tasks and tests support schools in accurately assessing attainment, pupil progress and target setting in primary computing.

For each iCompute unit for each year, we have produced an associated end of unit online diagnostic test and an end of unit assessment project. Diagnostic testing assists progression planning and helps identify gaps and/or misconceptions. The end of unit assessment projects enable teachers to check skills in computing and computational thinking. The provided answers and assessment guidance informs assessment judgements and can be fed into our interactive digital pupil progress trackers.

Our diagnostic tests match the National Curriculum for Computing at Key Stage 1 and Key Stage 2. They are divided into iCompute units and are intended for use following each unit to assess pupils’ knowledge, understanding and skills.

Our interactive, fun, quizzes are played online and bring a gamification aspect to assessment. Aside from being a powerful tool in measuring pupil progress, they also help increase engagement, motivation and encourage children to challenge themselves.

IT Progression

Forming part of our acclaimed primary computing schemes of work, our Tasks & Tests pack is available to buy from iCompute.

For more tips and advice about computing assessment see our post – How to assess primary computing.

Save

Save

Save

Save

Free Halloween Computing Lesson

Create a Halloween Web page with HTML

 

Free Halloween Computing Lesson

Click to download

Teachers and pupils alike love a themed lesson so I’ve created a new activity for Halloween computing that teaches basic HTML/CSS for pupils aged 9-11.

Each term, I create free themed computing lessons and I’ve written another step-by-step lesson plan and some teacher/pupil computing resources that I’m using in my computing classes and have added to iCompute’s primary computing schemes of work.  This activity has been adapted from a cross-curricular computing lesson in iCompute Across the Curriculum.

Halloween is approaching and you’re having a party! Using basic HTML and CSS your pupils will create an invitation to their party in the form of a web page.  In this activity children learn how HTML formats web content and CSS styles it using age-appropriate syntax and tools.

Halloween Invitation

Includes HTML tutorial

 

Ideas for differentiation, extension and enrichment are included in the lesson plan.  Plus HTML Mozilla Thimble tutorial for teacher and pupil support. Lots of opportunities to be inspired and get creative!

Cheat Sheet

Check out my other free seasonal primary computing lesson plans and resources elsewhere on this blog and by visiting icompute-uk.com/free-stuff.html

 

tutorial

iCompute Tutorial

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Primary Computing with Sphero SPRK+

Coding with Sphero SPRK+ and Sphero Edu

 

This post follows on from a previous post detailing my experiences of teaching primary computing, coding with Sphero 2.0.  Following the successful loan of Sphero 2.0 from Lancaster University as part of my role as a Computing at Schools Primary Computer Science Master Teacher, my school bought a class set of Sphero SPRK+ to support teaching primary computing and use elsewhere across the curriculum.

The Sphero SPRK+ Edition is aimed at the education sector and includes the same sensors and electronics as Sphero 2.0 but, unlike the white shell, the clear polycarbonate material brings pupils closer to the robotic action. Children can immediately see the connection between the programs they create and how the insides of Sphero work and react.  Powered by Sphero Edu app, pupils can learn programming using drag-and-drop blocks and progress to coding using JavaScript.  I really like how making connections between the visual programming language (the blocks) and its text equivalent is literally at pupils finger tips: with just a tap, they can see how the block of code they are using is written in JavaScript code.  That’s great for progression in computer science.

Sphero Edu

Tap to see blocks written in JavaScript

 

 

Sphero SPRK+ is certainly more stable than Sphero 2.0.  Because they are equipped with Bluetooth SMART technology they are much easier to connect to devices and, thankfully, don’t require any of pairing and labelling that I needed to do with Sphero 2.0 for classroom management. Here, connections are made between your device and the robot simply by tapping them together.  That said, do check your devices are compatible with SPRK+ as they need Bluetooth 4.0 LE to work.  I found out only seven of our iPads at school work with my new set.  Luckily, we only have six Sphero but it could have been a very costly mistake!

Sphero SPRK+ has lights, sound and voice.  I made links to the work we had been doing in cryptography (iCompute, Year 5, iCrypto) studying Morse Code by using Sphero’s strobe blocks to flash lights representing the dits and dahs of letters in secret messages (changing colours between letters to make decoding easier).  For the solutions, the children then added speak blocks after each sequence of Morse code, which said verbally what the letters were.

Another great feature of the Sphero Edu app is being able to easily see (and export to other apps) Sphero’s live sensory data.  This is brilliant for cross curricular work, particularly maths and science.  Sphero is packed with sensors — gyroscope, accelerometer, location, etc… Pupils can see the real time value of sensors within Sphero Edu with visual graphs.  If you throw Sphero like a ball, pupils will see the accelerometer data rise and fall. Similarly, when they construct a maze, they can use the data to track location, distance, and speed.

Sphero Protractor

Click to download

Last, but not least, Sphero Edu with Sphero SPRK+ includes a Program Cam feature which allows pupils to take a videos or images of programs while they’re running. Pupils can narrate what they’re created, demonstrate their learning (and ultimately mastery) and share their work with a wider audience.

Pupils naturally love working with Sphero, they think they’re playing. Under the guise of play, they’re actually learning invaluable programming skills alongside learning about everything from physics to art!  That’s learning at its best.  The SPRK+ edition, combined with the Sphero Edu app, brings so much more to the table to support teaching and learning – particularly in STEM subjects.  They’re expensive but with the right blend planning and imaginative resources, using Sphero SPRK+ in your school can extend to all areas of the curriculum.

Ready to roll?  The possibilities are exciting!

Our school purchased six Sphero SPRK+ at full price.  I have produced lesson plans and resources for iCompute that use Sphero 2.0 and Sphero SPRK+ but am in no way affiliated with Sphero Inc.

 

sphero cover

Visit iCompute to find out more about primary robotics

 

 

 

 

 

 

 

 

 

 

Primary Computing – Cryptography Lesson Plans

Encryption & Decryption

Cryptography Enigma Machine

Click to Download

Cryptography

Since man first began writing there has been a desire to send messages in secret: in code.  Codes and ciphers are forms of secret communication. A code replaces words with letters, numbers or symbols.  A cipher rearranges letters or uses substitutes to disguise the message. This process is called encryption. The art of writing and solving codes and ciphers is called cryptography.

Codes and ciphers have been used throughout time when people wanted to keep messages private.  Cryptography has, and is still, used by governments, military, companies, and organisations to protect information and messages.

Today, encryption is used to protect data and data transfer between computers.  Documents, data and messages are encrypted to protect confidentiality.  Modern encryption methods are very clever but their underlying principles remain that of those ancient methods.

Cryptography Unit

I have written a 6 week unit introducing cryptography for iCompute for Primary Schools computing scheme of work.  Here, the children will unleash their inner spy and learn about how data can be transferred in secret over distances. They will learn how codes and ciphers have been used throughout history and explore a number of different ways that data can be encrypted and decrypted.

cryptography-enigma-lesson

As part of it, along with step-by-step lesson plans and pupil/teacher support materials, I’ve been putting together resources on the history of cryptography.  Download a brief introduction to the Enigma machine and how the magnificent men and women at Bletchley helped shorten World War II with their code breaking skills!  Practice secret code writing in your classroom by downloading our Morse Code Worksheet and Morse Code Decoder Wheel and make a cipher disk.  Lots of engaging activities to learn about encryption methods past and present and the importance of keeping data private in the modern digital age.

cryptography cipher wheel

Download Cipher Wheel

The new cryptography unit – iCrypto – is available now in our Whole School Computing Curriculum for the National Curriculum for Computing at Key Stage 2.

Visit www.icompute-uk.com to find out more about our acclaimed primary computing scheme of work.

Morse Code Worksheet

Download Morse Code Worksheet

Morse Code Worksheet

Download Morse Decoder

Free Halloween Computing Lesson with HTML

Create a Halloween Web page

 

Free Halloween Computing Lesson

Click to download

Teachers and pupils alike love a themed lesson so I’ve created a new activity for Halloween computing that teaches basic HTML/CSS for pupils aged 9-11.

Each term, I create free themed computing lessons and I’ve written another step-by-step lesson plan and some teacher/pupil computing resources that I’m using in my computing classes and have added to iCompute’s primary computing schemes of work.  This activity has been adapted from a cross-curricular computing lesson in iCompute Across the Curriculum.

Halloween is approaching and you’re having a party! Using basic HTML and CSS your pupils will create an invitation to their party in the form of a web page.  In this activity children learn how HTML formats web content and CSS styles it using age-appropriate syntax and tools.

Halloween Invitation

Includes HTML template

 

Ideas for differentiation, extension and enrichment are included in the lesson plan.  Plus HTML tutorial for teacher and pupil support. Lots of opportunities to be inspired and get creative!

Cheat Sheet

Check out my other free seasonal primary computing lesson plans and resources elsewhere on this blog and by visiting icompute-uk.com/free-stuff.html

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Free Autumn Coding Lesson

How to code an Autumn leaf catching game

 

Free Coding Lesson

Click to download

Goodbye summer, hello a brand new academic year.  We know you’ve got plenty on your plate already with new pupils and all of the many other changes a new year brings.  Make your computing lessons easier this term and use our free coding lesson: an autumnal themed falling leaf game for pupils aged 7-11 using Scratch.

Each term, I create free (seasonal) computing lessons, and I’ve written another step-by-step lesson plan and some teacher/pupil computing resources that I’m using in my computing classes and am adding to iCompute this Autumn.

Autumn is here and catching a falling leaf before it hits the ground means you get one happy day!  Challenge your pupils to program sprites to catch falling autumn leaves.  Catch ten and program something awesome to happen any way they know how to!

Free autumn coding

Free coding lesson from iCompute

Autumn Pupil Support Card

Pupil Support Card

 

Ideas for differentiation, extension and enrichment are included in the lesson plan.  Plus program templates and partially-written programs for teacher and pupil support. Lots of opportunities to be inspired and get creative!

 

Check out my other free seasonal primary computing lesson plans and resources elsewhere on this blog and by visiting icompute-uk.com/free-stuff.html

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

iCompute and Pupils with Lakeland Radio

Computing in Primary Schools

This week Lindale CE Primary School were school of the week on Lakeland Radio.  Last Friday our author, Liane O’Kane, who teaches computing at Lindale (a Lead School on the Network of Excellence for Computer Science) met with Breakfast presenter Yakkers and featured on their Back to School with Yakkers segment.

The children and Liane spoke with Yakkers about Computing at Lindale Primary.  Lindale teach primary computing using iCompute for Primary Schools from EYFS to Year 6 and it was lovely hearing about how much the children have been learning and enjoying their lessons.

Summer Computing with Scratch

Coding an Ice-Cream Stand Simulation/Game

 

The Summer term is drawing to a close, the weather is warm and you’ll no doubt have lots of activities planned to take advantage of/celebrate the weather in your classes.  Let’s not forget about Computing though.  Take your pupils outside if you have laptops or mobile devices and use Scratch 2.0 with your Key Stage 2 children (pupils aged 7-11) and our free lesson for summer themed primary computing with supporting resources.

It’s a great end-of term opportunity for your pupils to showcase what they have learned all year in their programming lessons.

free lesson plan for computing

Click to download iCompute’s free summer computing lesson plan

I’ve written another step-by-step lesson plan and some teacher/pupil computing resources that I’m using and have added to iCompute to celebrate Summer.  Feel free to download and use in your own classroom.

Summer time and the weather is sweet.  Makes you want to make a nice cool treat…  Challenge your pupils to create algorithms and program an ice-cream simulation/game.

Free lesson: ice-cream simulation activity

Free ice-cream stand simulation programming activity

Ice-cream simulation pupil support card

Pupil Support Card

As usual, lots of opportunities for differentiation.  For instance, less able pupils could use pupil support cards (see Ice Cream stand card which is included in the pack) and/or concentrate on programming random customers and ice-cream combinations to appear.

Your more able pupils could:

  • program timers, scores and lives (e.g. customers leave ‘hide’ if their order isn’t made within time limits)
  • add a series of levels that become increasingly more challenging
  • generate random prices within a range
  • program your customers to pay
  • calculate and give change

Ideas for differentiation, extension and enrichment are included in the lesson plan.  Plus program templates and partially-written programs for teacher and pupil support. Lots of opportunities to be inspired and get creative!

Check out my other free seasonal primary computing lesson plans and resources elsewhere on this blog and by visiting icompute-uk.com/free-stuff.html

Save

Save

Save

Save

Save

Save

Teach Computing: Learn Computing

Your Pupils need YOU not just a Tutorial!


teaching computing not tutorialsComputing has been statutory for pupils from the age of five since 2014 and many schools have risen to the challenge and are teaching some excellent computing.  We’ve seen the emergence of some amazing pedagogies, tools and technologies.  Many companies, myself included with iCompute, have produced a plethora of resources to help schools teach computing creatively and well.  There are dozens of great software and apps that support teaching and learning – see my Periodic Table of Computing Resources for an idea of what’s out there.

I advocate the use of some coding apps; however I’m becoming increasingly concerned as I’ve noticed a worrying trend in primary schools for ‘teaching’ computing primarily through the use of software and services that are tutorial driven. I’m talking about the kind of app, software or service where children work independently through challenges or levels with on-screen prompts.  I spoke to one teacher recently who went from Scratch Jr (aimed at KS1) straight on to Swift Playgrounds (aimed at Year 7, but my able UKS2’s use it) without anything between because they were the only apps she could find that didn’t need her input!  Aside from the fact that there are apps that could fill that gap, it doesn’t mean they should.

There is, of course, a place for these kinds of activities in computing lessons – I produce some myself – but I fear that many teachers are adopting this as their only teaching approach and that’s bad.  Why?  Because they focus on one aspect of the curriculum only and teachers are using it due to a lack of confidence and subject knowledge, not because they’re enabling true self-directed learning.

In Roger Hiemstra’s (Bull, 2013) essay about self-directed learning, he proposes six roles for the teacher attempting to adopt self-directed learning approaches:

  • content resource
  • resource locator
  • interest stimulator
  • positive attitude generator
  • creativity and critical thinking stimulator
  • evaluation stimulator

Using mainly tutorial driven tools for computing lessons means the role of the teacher is often reduced to little more than a resource locator. A teacher’s pedagogical subject knowledge is about having a range of teaching approaches and strategies that enable them to transfer specific subject knowledge to their pupils, which includes knowledge of how to make that understandable.  In other words, they still need subject knowledge.  Often I’ve heard members of grass-roots organisations, who aim to encourage and support schools in computing, suggest to inexperienced teachers that it’s absolutely fine to ‘let the children get on with it’.  It’s not.  As with any subject we are paid to teach, we teachers need to acquire subject knowledge and, especially in the case of computing, keep it up to date.  Then teach it, properly, using a range of approaches and strategies.

Teacher apathy and lack of confidence is a problem in primary computing that we need to start seriously addressing.  It’s not okay to opt out or only cover aspects of it.  As I’ve said before, opting out of teaching computing is like not bothering much with Maths because you find it hard.  Just because some teachers do not find embracing technology an important part of their everyday lives and/or find it challenging does not mean that it can be ignored.  It’s vital for the children they are legally obliged to educate.

Of course I fully understand that many primary teachers feel as if they have been dropped in it, with little in the way of training on offer.  I run regular CPD in my voluntary role as a Primary Computer Science Master Teacher.  Time and time again, I’m training the same passionate, enthusiastic, teachers who are (crucially) released by their schools to attend sessions.  I specifically developed iCompute for inexperienced teachers – to teach the teacher as well as pupils – well in advance of the introduction of the National Curriculum in 2014, as I anticipated that this was going to be a huge leap for most and I’m passionate about my subject being taught with enthusiasm, creatively and well.

We need a shift in attitudes about teaching primary computing.  It is fundamental to the lives of our children and we owe it to them to prepare them to understand and be able to fully participate in the modern digital world.  Instead of searching for apps or subscribing to services that provide tutorial based lessons, we need to encourage teachers to focus on improving their subject knowledge and push for training.  Only then will they have the ability to know whether those apps and services offer any value in terms of learning and progression.  They will be opting in, not out.

Bibliography:

Charlotte Dignath-van Ewijk and Greetje van der Werf, “What Teachers Think about Self-Regulated Learning: Investigating Teacher Beliefs and Teacher Behavior of Enhancing Students’ Self-Regulation,” Education Research International, vol. 2012, Article ID 741713, 10 pages, 2012. doi:10.1155/2012/741713

Bull, Bernard, “What Is The Role Of A Teacher In A Self-Directed Learning Environment? – Etale – Ideas That Matter”. Etale – Ideas that Matter. N.p., 2017. Web. 4 Apr. 2017.

Save

Save

Save

Save

Save

Save

Save

Save