Liane is a Computer Scientist (BSc (Hons)), Software Engineer & author of iCompute which supports schools with a computing curriculum and resources for teaching computing in the EYFS, Key Stage 1 and Key Stage 2. ERA Awards Finalist 2016-2021, BETT Awards 2014-2018. Featured on BBC Bitesize for Primary Computing and The Hour of Code (code.org)

Join us for the Hour of Code™ 2018

The Hour of Code is Coming!

icompute hour of codeNot long to go now for the Hour of Code 2018 (December 3rd – 9th) and we can’t wait to see how many pupils and schools participate around the world.

HOCiCompute are delighted to partner with code.org again this year by providing lots of fun, creative, activities for schools to use as part of this event and throughout the year.  We’ve put together, free, Christmas themed lessons and lots more, including coding apps, sending secret messages with Morse Code, animating a snowman and saving Santa!  Included are detailed step-by-step lesson plans with built in differentiation and creative ideas for extension and enrichment.

The Hour of Code™ is a global movement and worldwide effort to celebrate computer science. Organised by Computer Science Education Week and Code.org it reaches tens of millions of students in 180+ countries through a one-hour introduction to computer science and computer programming.

In England, children have a statutory entitlement to a computer science education from the age of five. iCompute provides full coverage for the National Curriculum for Computing at Key Stage 1 and Key Stage 2.

Each year, iCompute offer free computing lesson plans and computing resources to support the Hour of Code™ and help raise awareness of and engagement in computing science around the world.

We really hope you join us this year for The Hour of Code and introduce your pupils to the joy of creative computing!

Save

Save

Save

Save

Save

Free Halloween Computing Lesson

Create a Halloween Web page with HTML

 

Free Halloween Computing Lesson

Click to download

Teachers and pupils alike love a themed lesson so I’ve created a new activity for Halloween computing that teaches basic HTML/CSS for pupils aged 9-11.

Each term, I create free themed computing lessons and I’ve written another step-by-step lesson plan and some teacher/pupil computing resources that I’m using in my computing classes and have added to iCompute’s primary computing schemes of work.  This activity has been adapted from a cross-curricular computing lesson in iCompute Across the Curriculum.

Halloween is approaching and you’re having a party! Using basic HTML and CSS your pupils will create an invitation to their party in the form of a web page.  In this activity children learn how HTML formats web content and CSS styles it using age-appropriate syntax and tools.

Halloween Invitation

Includes HTML tutorial

 

Ideas for differentiation, extension and enrichment are included in the lesson plan.  Plus HTML Mozilla Thimble tutorial for teacher and pupil support. Lots of opportunities to be inspired and get creative!

Cheat Sheet

Check out my other free seasonal primary computing lesson plans and resources elsewhere on this blog and by visiting icompute-uk.com/free-stuff.html

 

tutorial

iCompute Tutorial

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

HP Reveal – Augmented Reality for Teachers

HP Reveal Teacher Guide

I’m writing new units for iCompute’s whole-school primary computing scheme of work.  I’ve started with EYFS (children aged 3-5) and decided to make a variation of the popular Pokémon Go game.  Using an Augmented Reality app – HP Reveal (formerly Aurasma) – the children engage in a scavenger hunt for aliens hidden around the school.AR Worksheet

I had great fun creating the augmented reality lesson plans and colourful alien resources.

For teachers, I’ve written a HR Reveal teacher guide.  Please feel free to download and use in your own classroom to blend the real world and the virtual world and see images come to life!

HP Reveal Teacher Guide

Download HP Reveal Guide

 

 

Sphero Edu Commands Helpsheet

Sphero Commands Helpsheet

Regular readers of this blog will know that I teach primary computing and have recently added a Primary Robotics scheme of work to iCompute.  Part of this scheme involves working with Sphero and programming the robotic balls using Sphero Edu.  To help avoid repetitive strain injury by double tapping each block to find out what each command does, I’ve produced this handy Sphero Commands Helpsheet.  Now updated to include the new look Scratch blocks.

Download to get rolling with Sphero and Sphero Edu.

 

Coding Apps – Free Computing Lesson Plan

Coding Apps with a Text-based Programming Language

I’ve been busy writing lots of new units for iCompute this term and, during my research, came across the fabulous coding apps resource – Bitsbox.  Bitsbox uses a simplified version of Javascript, and provides tools that enable pupils to develop their own apps.

coding apps

Free Lesson Plan & Resources

It’s a great stepping stone from the blocks-based languages and environments your pupils may have already mastered (Eg. Scratch, App Inventor, Tynker etc) on to text-based languages.

Continue reading

Primary Computing with Sphero SPRK+

Coding with Sphero SPRK+ and Sphero Edu

 

This post follows on from a previous post detailing my experiences of teaching primary computing, coding with Sphero 2.0.  Following the successful loan of Sphero 2.0 from Lancaster University as part of my role as a Computing at Schools Primary Computer Science Master Teacher, my school bought a class set of Sphero SPRK+ to support teaching primary computing and use elsewhere across the curriculum.

The Sphero SPRK+ Edition is aimed at the education sector and includes the same sensors and electronics as Sphero 2.0 but, unlike the white shell, the clear polycarbonate material brings pupils closer to the robotic action. Children can immediately see the connection between the programs they create and how the insides of Sphero work and react.  Powered by Sphero Edu app, pupils can learn programming using drag-and-drop blocks and progress to coding using JavaScript.  I really like how making connections between the visual programming language (the blocks) and its text equivalent is literally at pupils finger tips: with just a tap, they can see how the block of code they are using is written in JavaScript code.  That’s great for progression in computer science.

Sphero Edu

Tap to see blocks written in JavaScript

 

 

Sphero SPRK+ is certainly more stable than Sphero 2.0.  Because they are equipped with Bluetooth SMART technology they are much easier to connect to devices and, thankfully, don’t require any of pairing and labelling that I needed to do with Sphero 2.0 for classroom management. Here, connections are made between your device and the robot simply by tapping them together.  That said, do check your devices are compatible with SPRK+ as they need Bluetooth 4.0 LE to work.  I found out only seven of our iPads at school work with my new set.  Luckily, we only have six Sphero but it could have been a very costly mistake!

Sphero SPRK+ has lights, sound and voice.  I made links to the work we had been doing in cryptography (iCompute, Year 5, iCrypto) studying Morse Code by using Sphero’s strobe blocks to flash lights representing the dits and dahs of letters in secret messages (changing colours between letters to make decoding easier).  For the solutions, the children then added speak blocks after each sequence of Morse code, which said verbally what the letters were.

Another great feature of the Sphero Edu app is being able to easily see (and export to other apps) Sphero’s live sensory data.  This is brilliant for cross curricular work, particularly maths and science.  Sphero is packed with sensors — gyroscope, accelerometer, location, etc… Pupils can see the real time value of sensors within Sphero Edu with visual graphs.  If you throw Sphero like a ball, pupils will see the accelerometer data rise and fall. Similarly, when they construct a maze, they can use the data to track location, distance, and speed.

Sphero Protractor

Click to download

Last, but not least, Sphero Edu with Sphero SPRK+ includes a Program Cam feature which allows pupils to take a videos or images of programs while they’re running. Pupils can narrate what they’re created, demonstrate their learning (and ultimately mastery) and share their work with a wider audience.

Pupils naturally love working with Sphero, they think they’re playing. Under the guise of play, they’re actually learning invaluable programming skills alongside learning about everything from physics to art!  That’s learning at its best.  The SPRK+ edition, combined with the Sphero Edu app, brings so much more to the table to support teaching and learning – particularly in STEM subjects.  They’re expensive but with the right blend planning and imaginative resources, using Sphero SPRK+ in your school can extend to all areas of the curriculum.

Ready to roll?  The possibilities are exciting!

Our school purchased six Sphero SPRK+ at full price.  I have produced lesson plans and resources for iCompute that use Sphero 2.0 and Sphero SPRK+ but am in no way affiliated with Sphero Inc.

 

sphero cover

Visit iCompute to find out more about primary robotics

 

 

 

 

 

 

 

 

 

 

Primary Computing – Cryptography Lesson Plans

Encryption & Decryption

Cryptography Enigma Machine

Click to Download

Cryptography

Since man first began writing there has been a desire to send messages in secret: in code.  Codes and ciphers are forms of secret communication. A code replaces words with letters, numbers or symbols.  A cipher rearranges letters or uses substitutes to disguise the message. This process is called encryption. The art of writing and solving codes and ciphers is called cryptography.

Codes and ciphers have been used throughout time when people wanted to keep messages private.  Cryptography has, and is still, used by governments, military, companies, and organisations to protect information and messages.

Today, encryption is used to protect data and data transfer between computers.  Documents, data and messages are encrypted to protect confidentiality.  Modern encryption methods are very clever but their underlying principles remain that of those ancient methods.

Cryptography Unit

I have written a 6 week unit introducing cryptography for iCompute for Primary Schools computing scheme of work.  Here, the children will unleash their inner spy and learn about how data can be transferred in secret over distances. They will learn how codes and ciphers have been used throughout history and explore a number of different ways that data can be encrypted and decrypted.

cryptography-enigma-lesson

As part of it, along with step-by-step lesson plans and pupil/teacher support materials, I’ve been putting together resources on the history of cryptography.  Download a brief introduction to the Enigma machine and how the magnificent men and women at Bletchley helped shorten World War II with their code breaking skills!  Practice secret code writing in your classroom by downloading our Morse Code Worksheet and Morse Code Decoder Wheel and make a cipher disk.  Lots of engaging activities to learn about encryption methods past and present and the importance of keeping data private in the modern digital age.

cryptography cipher wheel

Download Cipher Wheel

The new cryptography unit – iCrypto – is available now in our Whole School Computing Curriculum for the National Curriculum for Computing at Key Stage 2.

Visit www.icompute-uk.com to find out more about our acclaimed primary computing scheme of work.

Morse Code Worksheet

Download Morse Code Worksheet

Morse Code Worksheet

Download Morse Decoder

Cross Curricular Computing Lesson Plans

Enrich learning with a cross curricular approach to primary computing

CT Poster

Click to download the poster

Computing is one of the most fundamentally cross curricular subject areas in education.  It’s about using technology, logic, creativity and computational thinking to solve problems that cross all disciplines.  It requires the systematic breakdown (decomposition) of both the problem and the solution.  We need to prepare pupils for how to live in an increasingly digital world by equipping them with the knowledge, understanding and skills to solve as yet unknown problems using tools and technologies that do not yet exist.  We can work towards achieving this by using computing as a means of making sense of the world and using what the children learn in computing across the curriculum.

The best primary practice includes a blend of rigorous, discrete, subject teaching and equally effective cross curricular links.  Both approaches are needed for effective learning to take place, to enable children to make links between subjects and to set learning in meaningful contexts.  Using computing throughout the primary curriculum offers a way to enrich and deepen learning through engaging, interconnected, topics.

I have put together a selection of free resources and links to others to help teachers get started with ideas and inspiration for enriching learning and exploring computing through a rich variety of media and technologies in cross curricular contexts.

cross curricular computational thinking

Click to download poster

Computational Thinking

http://icomp.site/cthink

Cross Curricular computing

Free Cross-Curricular Computing Planning

http://www.icompute-uk.com/hoc

Cross Curricular Podcasting

Podcasting

Podcasting

http://icomp.site/podcast

cross curricular CT Diary

Click to Download

Free Computational Thinking Diary

http://icomp.site/diary (Download)

Cross curricular QR Codes

QR Codes enable mobile learning

QR Codes in the Classroom

http://icomp.site/qr

Cross curricular Robotics

Robotics

Robotics

http://www.icompute-uk.com/hoc

Visit www.icompute-uk.com to find out more about our highly acclaimed comprehensive primary computing schemes of work and cross curricular computing pack.

Save

Primary Cryptography

Encryption and Decryption

Enigma Factfile

Click to download

Since man first began writing there has been a desire to send messages in secret: in code.  Codes and ciphers are forms of secret communication. A code replaces words with letters, numbers or symbols.  A cipher rearranges letters or uses substitutes to disguise the message. This process is called encryption. The art of writing and solving codes and ciphers is called cryptography.

Codes and ciphers have been used throughout time when people wanted to keep messages private.  Cryptography has, and is still, used by governments, military, companies, and organisations to protect information and messages.

Today, encryption is used to protect data and data transfer between computers.  Documents, data and messages are encrypted to protect confidentiality.  Modern encryption methods are very clever but their underlying principles remain that of those ancient methods.

I’m writing a unit of work on cryptography which will be published to iCompute for Primary Schools computing scheme of work.  Here, the children will unleash their inner spy and learn about how data can be transferred in secret over distances. They will learn how codes and ciphers have been used throughout history and explore a number of different ways that data can be encrypted and decrypted.

As part of it, I’ve been putting together resources on the history of cryptography.  Here is a brief introduction to the Enigma machine and how the magnificent men and women at Bletchley helped shorten World War II with their code breaking skills!

The new cryptography unit – iCrypto – is available now!  Visit www.icompute-uk.com to find out more about our acclaimed primary computing scheme of work.

Join us for the Hour of Code™ 2017

The Hour of Code is Coming!

HOC 2017Not long to go now for the Hour of Code 2017 (December 4th – 10th) and we can’t wait to see how many pupils and schools participate around the world.

HOCiCompute are delighted to partner with code.org again this year by providing lots of fun, creative, activities for schools to use as part of this event and throughout the year.  We’ve put together, free, Christmas themed lessons and lots more, including saving Santa with Scratch, animating a snowman and delivering Santa’s presents with parrot drones!  Included are detailed step-by-step lesson plans with built in differentiation and creative ideas for extension and enrichment.

The Hour of Code™ is a global movement and worldwide effort to celebrate computer science. Organised by Computer Science Education Week and Code.org it reaches tens of millions of students in 180+ countries through a one-hour introduction to computer science and computer programming.

In England, children have a statutory entitlement to a computer science education from the age of five. iCompute provides full coverage for the National Curriculum for Computing at Key Stage 1 and Key Stage 2.

Each year, we offer free computing lesson plans and computing resources to support the Hour of Code™ and help raise awareness of and engagement in computing science around the world.

We really hope you join us this year for The Hour of Code and introduce your pupils to the joy of creative computing!

Save

Save

Save

Save

Save

BETT Awards 2018

BETT Award 2018 Nomination for iCompute!

BETT Awards 2018

We are thrilled to announce that iCompute has been shortlisted for a coveted BETT Award for iCompute in the EYFS.

ERA 2017 Finalist - iCompute in the EYFS

BETT Awards 2018 Finalist – Early Years Content

The Bett Awards are a celebration of the inspiring creativity and innovation that can be found throughout technology for education. The awards form an integral part of Bett each year, the world’s leading showcase of education technology solutions.

The Director of BESA, Patrick Hayes, who chairs the panel of judges for the Bett Awards, said:

This was a record year for the Bett Awards, with more applications from EdTech companies than ever before, coming in from around the world. This reflects the status of the Bett Awards as being the global gold standard when it comes to recognising excellence in education technology. The quality of applications was incredibly high this year, and judges had a lot of difficult decisions to make when deciding who the finalists should be. It is no mean feat to be a Bett Awards finalist, and huge congratulations should be in order for all of the companies who made the cut this year!”

The panel of judges selected iCompute for the shortlist according to rigorous criteria, taking into consideration the innovative nature of the products, their impact on teaching and learning in the classroom, and their cost effectiveness in terms of educational aims and results.

Find out more about iCompute in the EYFS.

Liane O’Kane, Managing Director of iCompute, comments:

“Being shortlisted as a BETT finalist this year is a great achievement and a reflection of our dedication and hard work in helping schools teach primary computing creatively and well.  We constantly add to and update our product range to remain at the forefront of advances in educational technology.  We never take these things for granted and are very proud that our expertise and innovation in teaching & learning with, and about, technology has been recognised by BETT and BESA once again.  Fingers crossed for a win this year!’

The full list of finalists is available on Besa’s website.  The winners of the Bett Awards 2018 will be announced on the evening of Wednesday 24 January 2018.

Save

Save

Save

Save

Save

Save

Save

Save

Free Halloween Computing Lesson with HTML

Create a Halloween Web page

 

Free Halloween Computing Lesson

Click to download

Teachers and pupils alike love a themed lesson so I’ve created a new activity for Halloween computing that teaches basic HTML/CSS for pupils aged 9-11.

Each term, I create free themed computing lessons and I’ve written another step-by-step lesson plan and some teacher/pupil computing resources that I’m using in my computing classes and have added to iCompute’s primary computing schemes of work.  This activity has been adapted from a cross-curricular computing lesson in iCompute Across the Curriculum.

Halloween is approaching and you’re having a party! Using basic HTML and CSS your pupils will create an invitation to their party in the form of a web page.  In this activity children learn how HTML formats web content and CSS styles it using age-appropriate syntax and tools.

Halloween Invitation

Includes HTML template

 

Ideas for differentiation, extension and enrichment are included in the lesson plan.  Plus HTML tutorial for teacher and pupil support. Lots of opportunities to be inspired and get creative!

Cheat Sheet

Check out my other free seasonal primary computing lesson plans and resources elsewhere on this blog and by visiting icompute-uk.com/free-stuff.html

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Free Autumn Coding Lesson

How to code an Autumn leaf catching game

 

Free Coding Lesson

Click to download

Goodbye summer, hello a brand new academic year.  We know you’ve got plenty on your plate already with new pupils and all of the many other changes a new year brings.  Make your computing lessons easier this term and use our free coding lesson: an autumnal themed falling leaf game for pupils aged 7-11 using Scratch.

Each term, I create free (seasonal) computing lessons, and I’ve written another step-by-step lesson plan and some teacher/pupil computing resources that I’m using in my computing classes and am adding to iCompute this Autumn.

Autumn is here and catching a falling leaf before it hits the ground means you get one happy day!  Challenge your pupils to program sprites to catch falling autumn leaves.  Catch ten and program something awesome to happen any way they know how to!

Free autumn coding

Free coding lesson from iCompute

Autumn Pupil Support Card

Pupil Support Card

 

Ideas for differentiation, extension and enrichment are included in the lesson plan.  Plus program templates and partially-written programs for teacher and pupil support. Lots of opportunities to be inspired and get creative!

 

Check out my other free seasonal primary computing lesson plans and resources elsewhere on this blog and by visiting icompute-uk.com/free-stuff.html

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Primary Robotics

Teach Controlling Physical Systems

primary robotics

iCompute’s Primary Robotics Pack

I’ve been teaching primary robotics for some time now as part of the computing curriculum that I write for iCompute.  I teach with and have produced schemes of work for robotics from EYFS to Year 6 using BeeBots, LEGO WeDo, Sphero and parrot drones to name a few.

Whilst teaching computing itself can be daunting for many teachers, the prospect of the added pressure of actual things being whizzed around classrooms through code can push many to avoid the controlling physical systems aspects of the National Curriculum for Computing altogether!

The rapid pace of advances in technology means children are growing up in an age dominated by embedded computer systems and robotics. It is crucial they have an understanding of its impact on the world and their own futures.  Teachers need to be in a position to provide pupils with the level of knowledge, understanding and skills they need to live in the modern world.

Including Science, Technology, Engineering, and Math (STEM subjects) in early education provides a strong motivation for learning and an improvement in progression.  Teaching robotics is a great way of  connecting with children and enables schools to engage the potential engineers and computer scientists of the future.

Most curricula in primary schools cover science and mathematics, but we need to do more in teaching problem solving, computer science, design, technology and robotics.

The use of robotic systems and robotics as a subject offers an introduction to the  engineering design process and sets children’s learning in a fun, meaningful, contexts.  The fundamental principles of computer science are applied and made easier as models and devices can be designed, constructed, programmed and executed in front of pupil’s eyes.  This makes it much easier to learn what robots can and cannot do: their capabilities and, crucially, their limitations.

We’ve recently put all of our robotics units into one primary robotics pack that covers the controlling physical systems aspects of the National Curriculum for Computing at Key Stage 1 and Key Stage 2 (pupils aged 5-11).

I’m also including some free activities as part of our contribution to this year’s Hour of Code, adding to those already featured last year and still live.  As the Hour of Code launches each year in December, I’ll be adding a nice festive twist to my teacher-led activities. Hint: Santa’s sleigh is broken but he has a drone!  Here’s a sneak peek of the cover…

HOC iFly

HOC iFly Cover

Check out my other blog posts for teaching tips and advice about how to manage programming physical devices with younger children. I cover:

Sphero

LEGO WeDo

LEGO WeDo Classroom tips

Parrot Drones

The primary robotics pack is now available to purchase from iCompute.

Save

Save

Save

Save

Save

Save

Save

Save

Save

Primary Computing Provision

Good or Better Primary Computing?

 

Observation

Computing Observation

Inspired by the great set of questions produced by Miles Berry – for school experience tutors to ask when observing trainee teachers in Computing – I’ve produced my own set for schools to reflect on regarding their computing provision which, hopefully, can be used to inform future plans.

The questions cover most of David Brown’s (former HMI lead for Computing) thoughts for inspecting computing – with a few tweaks!

Continue reading

iCompute and Pupils with Lakeland Radio

Computing in Primary Schools

This week Lindale CE Primary School were school of the week on Lakeland Radio.  Last Friday our author, Liane O’Kane, who teaches computing at Lindale (a Lead School on the Network of Excellence for Computer Science) met with Breakfast presenter Yakkers and featured on their Back to School with Yakkers segment.

The children and Liane spoke with Yakkers about Computing at Lindale Primary.  Lindale teach primary computing using iCompute for Primary Schools from EYFS to Year 6 and it was lovely hearing about how much the children have been learning and enjoying their lessons.

Summer Computing with Scratch

Coding an Ice-Cream Stand Simulation/Game

 

The Summer term is drawing to a close, the weather is warm and you’ll no doubt have lots of activities planned to take advantage of/celebrate the weather in your classes.  Let’s not forget about Computing though.  Take your pupils outside if you have laptops or mobile devices and use Scratch 2.0 with your Key Stage 2 children (pupils aged 7-11) and our free lesson for summer themed primary computing with supporting resources.

It’s a great end-of term opportunity for your pupils to showcase what they have learned all year in their programming lessons.

free lesson plan for computing

Click to download iCompute’s free summer computing lesson plan

I’ve written another step-by-step lesson plan and some teacher/pupil computing resources that I’m using and have added to iCompute to celebrate Summer.  Feel free to download and use in your own classroom.

Summer time and the weather is sweet.  Makes you want to make a nice cool treat…  Challenge your pupils to create algorithms and program an ice-cream simulation/game.

Free lesson: ice-cream simulation activity

Free ice-cream stand simulation programming activity

Ice-cream simulation pupil support card

Pupil Support Card

As usual, lots of opportunities for differentiation.  For instance, less able pupils could use pupil support cards (see Ice Cream stand card which is included in the pack) and/or concentrate on programming random customers and ice-cream combinations to appear.

Your more able pupils could:

  • program timers, scores and lives (e.g. customers leave ‘hide’ if their order isn’t made within time limits)
  • add a series of levels that become increasingly more challenging
  • generate random prices within a range
  • program your customers to pay
  • calculate and give change

Ideas for differentiation, extension and enrichment are included in the lesson plan.  Plus program templates and partially-written programs for teacher and pupil support. Lots of opportunities to be inspired and get creative!

Check out my other free seasonal primary computing lesson plans and resources elsewhere on this blog and by visiting icompute-uk.com/free-stuff.html

Save

Save

Save

Save

Save

Save

Teach Computing: Learn Computing

Your Pupils need YOU not just a Tutorial!


teaching computing not tutorialsComputing has been statutory for pupils from the age of five since 2014 and many schools have risen to the challenge and are teaching some excellent computing.  We’ve seen the emergence of some amazing pedagogies, tools and technologies.  Many companies, myself included with iCompute, have produced a plethora of resources to help schools teach computing creatively and well.  There are dozens of great software and apps that support teaching and learning – see my Periodic Table of Computing Resources for an idea of what’s out there.

I advocate the use of some coding apps; however I’m becoming increasingly concerned as I’ve noticed a worrying trend in primary schools for ‘teaching’ computing primarily through the use of software and services that are tutorial driven. I’m talking about the kind of app, software or service where children work independently through challenges or levels with on-screen prompts.  I spoke to one teacher recently who went from Scratch Jr (aimed at KS1) straight on to Swift Playgrounds (aimed at Year 7, but my able UKS2’s use it) without anything between because they were the only apps she could find that didn’t need her input!  Aside from the fact that there are apps that could fill that gap, it doesn’t mean they should.

There is, of course, a place for these kinds of activities in computing lessons – I produce some myself – but I fear that many teachers are adopting this as their only teaching approach and that’s bad.  Why?  Because they focus on one aspect of the curriculum only and teachers are using it due to a lack of confidence and subject knowledge, not because they’re enabling true self-directed learning.

In Roger Hiemstra’s (Bull, 2013) essay about self-directed learning, he proposes six roles for the teacher attempting to adopt self-directed learning approaches:

  • content resource
  • resource locator
  • interest stimulator
  • positive attitude generator
  • creativity and critical thinking stimulator
  • evaluation stimulator

Using mainly tutorial driven tools for computing lessons means the role of the teacher is often reduced to little more than a resource locator. A teacher’s pedagogical subject knowledge is about having a range of teaching approaches and strategies that enable them to transfer specific subject knowledge to their pupils, which includes knowledge of how to make that understandable.  In other words, they still need subject knowledge.  Often I’ve heard members of grass-roots organisations, who aim to encourage and support schools in computing, suggest to inexperienced teachers that it’s absolutely fine to ‘let the children get on with it’.  It’s not.  As with any subject we are paid to teach, we teachers need to acquire subject knowledge and, especially in the case of computing, keep it up to date.  Then teach it, properly, using a range of approaches and strategies.

Teacher apathy and lack of confidence is a problem in primary computing that we need to start seriously addressing.  It’s not okay to opt out or only cover aspects of it.  As I’ve said before, opting out of teaching computing is like not bothering much with Maths because you find it hard.  Just because some teachers do not find embracing technology an important part of their everyday lives and/or find it challenging does not mean that it can be ignored.  It’s vital for the children they are legally obliged to educate.

Of course I fully understand that many primary teachers feel as if they have been dropped in it, with little in the way of training on offer.  I run regular CPD in my voluntary role as a Primary Computer Science Master Teacher.  Time and time again, I’m training the same passionate, enthusiastic, teachers who are (crucially) released by their schools to attend sessions.  I specifically developed iCompute for inexperienced teachers – to teach the teacher as well as pupils – well in advance of the introduction of the National Curriculum in 2014, as I anticipated that this was going to be a huge leap for most and I’m passionate about my subject being taught with enthusiasm, creatively and well.

We need a shift in attitudes about teaching primary computing.  It is fundamental to the lives of our children and we owe it to them to prepare them to understand and be able to fully participate in the modern digital world.  Instead of searching for apps or subscribing to services that provide tutorial based lessons, we need to encourage teachers to focus on improving their subject knowledge and push for training.  Only then will they have the ability to know whether those apps and services offer any value in terms of learning and progression.  They will be opting in, not out.

Bibliography:

Charlotte Dignath-van Ewijk and Greetje van der Werf, “What Teachers Think about Self-Regulated Learning: Investigating Teacher Beliefs and Teacher Behavior of Enhancing Students’ Self-Regulation,” Education Research International, vol. 2012, Article ID 741713, 10 pages, 2012. doi:10.1155/2012/741713

Bull, Bernard, “What Is The Role Of A Teacher In A Self-Directed Learning Environment? – Etale – Ideas That Matter”. Etale – Ideas that Matter. N.p., 2017. Web. 4 Apr. 2017.

Save

Save

Save

Save

Save

Save

Save

Save