Developing Computational Thinking

Preparing The Next Generation of Problem Solvers

computational thinking puzzles

Computational Thinking Puzzles

 

iCompute ERA 2017 Finalist

iCompute’s computational thinking puzzles for primary pupils are a ground-breaking new development in primary education. In the digital age, the benefits of computational thinking throughout education are increasingly being highlighted. Our, colourful, engaging and challenging puzzles are designed for children aged 7-11 to independently practise and develop the fundamental computational thinking skills that lie at the heart of the National Curriculum for Computing:

A high quality computing education equips pupils to use computational thinking and creativity to understand and change the World” (DfE)

Computational Thinking is about transforming a seemingly complex problem into a simple one that we know how to solve.  This involves the use of abstraction, decomposition and generalisation when approaching tasks to remove unnecessary detail, split it into manageable parts and build on solutions we have used before.  Finding solutions involves spotting patterns and using logical reasoning – applying rules to find solutions, eg. if this happens then I need to do that, otherwise I need to do this…  Once we have a working solution, we then use evaluation to analyse it and ask – Is it any good ? Can it be improved? How?

Teaching computational thinking is not teaching children how to think like a computer.  Computers cannot think.  Computers are stupid.  Everything computers do, people make happen.  It’s also not teaching children how to compute.  It’s developing the knowledge, skills and understanding of how people solve problems.  As such, it absolutely should not be confined to computing lessons and should be used throughout the curriculum to approach and solve problems and communicate and collaborate with others.

Our puzzles help develop the fundamental computational thinking skills of decomposition, abstraction, generalisation and developing algorithms. This means children can find solutions and apply those already found to different problems, in different contexts. All of this helps lay the foundations for them to become effective problem solvers.

Solving puzzles leads to important outcomes including challenge, a sense of satisfaction, achievement and enjoyment. Puzzles rouse curiosity and hone intuition. Our carefully constructed computational thinking puzzles – designed by a computer scientist, software engineer and computer science master teacher – provide challenge, insight and entertainment all of which increase pupil engagement and promote independent learning.

Puzzles help children develop general problem-solving and independent learning skills.  Engaging in puzzles means that pupils:

  • use creative approaches
  • make choices;
  • develop modelling skills;
  • develop persistence and resilience;
  • practice recognition of patterns and similarities, reducing the complexity of problems

 Pupils use, applying and develop the following aspects of the National Curriculum for Computing:
* Logical reasoning
* Decomposition – splitting problems down into smaller problems to make them easier to solve
* Abstraction – taking the detail out of a problem to make it easier to solve
* Generalisation – adapting solutions to other problems to solve new ones
* Pattern recognition – spotting patterns and relationships
* Algorithms – finding the steps that solve a problem
* Evaluation – looking critically at a solution to determine if there’s a better way to solve it
* Testing – checking whether a possible solution works
* Debugging – finding problems with a solution and fixing them

Our puzzles are designed for independent pupil work and provide pupils with handy tips on how to approach the problems and challenges. They also make clear links between the puzzles being approached, the skills being developed and the relevance of both not just in computing but the wider world. This enables pupils to make clear links between subjects and helps pupils make meaning of their learning.

See this post for an example of the puzzles.  You can also download samples and order class packs from our main website.

Download a free Computational Thinking Diary here:

Computational Thinking Diary

Click to download

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

About Liane O'Kane

Liane is a Computer Scientist (BSc (Hons)), Software Engineer & author of iCompute for Primary Schools which supports schools with schemes of work for teaching computing in the EYFS, Key Stage 1 and Key Stage 2. BETT Awards Finalist 2014-2016, ERA Finalist 2016-2017. Featured on BBC Bitesize for Primary Computing and The Hour of Code (code.org)
Bookmark the permalink.

Comments are closed