Halloween 🎃 Computational Thinking Puzzles

Scarily 👻 Good Free Resources for Primary Computing

 

Help your pupils get dead ⚰️ good at problem solving using key computational thinking skills such as abstraction, decomposition, generalisation and pattern spotting with our free Halloween themed puzzles.

Computational thinking lies at the heart of the National Curriculum for Computing and our best selling (Educational Resources Awards nominated) series of Computational Thinking Puzzle books 1-4 help pupils independently practice the skills they learn in their computing lessons.

Grab yourself a treat 🍬 with our free puzzles for Halloween.   Visit www.icompute-uk.com for more free themed lesson plans and resources to support teaching primary computing.

 

Download a free Halloween Puzzle

Halloween Puzzle 2

Download a free Halloween Puzzle

 

Developing Computational Thinking

Preparing The Next Generation of Problem Solvers

computational thinking puzzles

Computational Thinking Puzzles

 

iCompute ERA 2017 Finalist

iCompute’s computational thinking puzzles for primary pupils are a ground-breaking new development in primary education. In the digital age, the benefits of computational thinking throughout education are increasingly being highlighted. Our, colourful, engaging and challenging puzzles are designed for children aged 7-11 to independently practise and develop the fundamental computational thinking skills that lie at the heart of the National Curriculum for Computing:

A high quality computing education equips pupils to use computational thinking and creativity to understand and change the World” (DfE)

Computational Thinking is about transforming a seemingly complex problem into a simple one that we know how to solve.  This involves the use of abstraction, decomposition and generalisation when approaching tasks to remove unnecessary detail, split it into manageable parts and build on solutions we have used before.  Finding solutions involves spotting patterns and using logical reasoning – applying rules to find solutions, eg. if this happens then I need to do that, otherwise I need to do this…  Once we have a working solution, we then use evaluation to analyse it and ask – Is it any good ? Can it be improved? How?

Teaching computational thinking is not teaching children how to think like a computer.  Computers cannot think.  Computers are stupid.  Everything computers do, people make happen.  It’s also not teaching children how to compute.  It’s developing the knowledge, skills and understanding of how people solve problems.  As such, it absolutely should not be confined to computing lessons and should be used throughout the curriculum to approach and solve problems and communicate and collaborate with others.

Our puzzles help develop the fundamental computational thinking skills of decomposition, abstraction, generalisation and developing algorithms. This means children can find solutions and apply those already found to different problems, in different contexts. All of this helps lay the foundations for them to become effective problem solvers.

Solving puzzles leads to important outcomes including challenge, a sense of satisfaction, achievement and enjoyment. Puzzles rouse curiosity and hone intuition. Our carefully constructed computational thinking puzzles – designed by a computer scientist, software engineer and computer science master teacher – provide challenge, insight and entertainment all of which increase pupil engagement and promote independent learning.

Puzzles help children develop general problem-solving and independent learning skills.  Engaging in puzzles means that pupils:

  • use creative approaches
  • make choices;
  • develop modelling skills;
  • develop persistence and resilience;
  • practice recognition of patterns and similarities, reducing the complexity of problems

 Pupils use, applying and develop the following aspects of the National Curriculum for Computing:
* Logical reasoning
* Decomposition – splitting problems down into smaller problems to make them easier to solve
* Abstraction – taking the detail out of a problem to make it easier to solve
* Generalisation – adapting solutions to other problems to solve new ones
* Pattern recognition – spotting patterns and relationships
* Algorithms – finding the steps that solve a problem
* Evaluation – looking critically at a solution to determine if there’s a better way to solve it
* Testing – checking whether a possible solution works
* Debugging – finding problems with a solution and fixing them

Our puzzles are designed for independent pupil work and provide pupils with handy tips on how to approach the problems and challenges. They also make clear links between the puzzles being approached, the skills being developed and the relevance of both not just in computing but the wider world. This enables pupils to make clear links between subjects and helps pupils make meaning of their learning.

See this post for an example of the puzzles.  You can also download samples and order class packs from our main website.

Download a free Computational Thinking Diary here:

Computational Thinking Diary

Click to download

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

A Computational Thinking Puzzle

Logical Thinking Puzzle for Key Stage 2 Computing

Here’s one of our computational thinking puzzles designed for independent work for pupils aged 7-11 to practise and develop the computational thinking skills that lie at the heart of the National Curriculum for Computing at Key Stage 1 and Key Stage 2.

To find out more about Computational Thinking and how puzzles can help children engage and develop analytical problem solving skills that will help them, not just in computing, but throughout their lives read this post.

To find out the answer, scroll down.  After you’ve had a go!

Puzzle 5

To reveal the answer click/tap ‘MORE’

Continue reading

Computational Thinking Puzzles for Primary Pupils

Develop Primary Computational Thinking Skills With Puzzles

Computational Thinking Puzzle Book

Computational Thinking Puzzle Workbooks

Computational thinking is at the heart of the statutory programme of study for Computing:

A high quality computing education equips pupils to use computational thinking and creativity to understand and change the world (DfE).

Since the introduction of the National Curriculum for Computing in 2014, schools now teach computing from the age of 5 and have developed curricula to meet their statutory obligations; however many lack a focus on developing computational thinking skills favouring, instead, to concentrate on the programming, or coding, objectives. In this post, I discuss computational thinking in more detail and how teaching it helps children become problem solvers which is important not just in computing but is an essential life skill.

There has been much research into the benefits of puzzle-based learning. Puzzles help children develop general problem-solving and independent learning skills.

According to Badger et al. (2012) engaging in puzzles means that pupils:

  • take personal responsibility;
  • adopt novel and creative approaches, making choices;
  • develop modelling skills;
  • develop tenacity;
  • practice recognition of cases, reducing problem situations to exercises.

Additionally, in solving puzzles pupils use and apply a range of strategies that cross disciplines in entertaining and engaging ways.

So what does any of this have to do with computational thinking? By selecting the right variety and complexity of puzzles, children will independently practise and develop the fundamental computational thinking skills of decomposition, abstraction, generalisation and developing algorithms.

This will enable them to find solutions and apply those already found to different problems, in different contexts. All of this helps lay the foundations for pupils to become effective problem solvers.  Skills that are increasingly important, as discussed in this post, given the digital world we live in and the need to prepare pupils to solve as yet unknown problems using tools and technologies that do not yet exist.

ERA 2017 Award

Best Educational Book

UPDATE: iCompute’s Computational Thinking Puzzle Workbooks 1-4 have been shortlisted for prestigious ERA (Education Resource Awards) 2017 for Best Educational Book.

 

 

 

 

References:

Badger, M., Sangwin, C, J., Ventura-Medina, E., Thomas, C, R.: 2012, A Guide To Puzzle-Based Learning In Stem Subjects, University of Birmingham.

Save

Save

Computational Thinking – Primary Computing

Computational Thinking Across the Curriculum

Computational Thinking is a life skill for everyone. It’s analytical problem solving: finding solutions to ‘problems’ using logical reasoning and systematic approaches.  By ‘problem’ I mean something you want to achieve.  This could be anything from designing and building a physical structure to creating a piece of art.

CT Poster

Click to download the poster

 Fundamentally, Computational Thinking is about transforming a seemingly complex problem into a simple one that we know how to solve.

This involves the use of abstraction, decomposition and generalisation when approaching tasks to remove unnecessary detail, split it into manageable parts and build on solutions we have used before.

Finding solutions involves spotting patterns and using logical reasoning – applying rules to find solutions, eg. if this happens then I need to do that, otherwise I need to do this…  Once we have a working solution, we then use evaluation to analyse it and ask – Is it any good ? Can it be improved? How?

Teaching computational thinking is not teaching children how to think like a computer.  Computers cannot think.  Computers are stupid.  Everything computers do, people make happen.  It’s also not teaching children how to compute.  It’s developing the knowledge, skills and understanding of how people solve problems.  As such, it absolutely should not be confined to computing lessons and should be used throughout the curriculum to approach and solve problems and communicate and collaborate with others.

Search our blog for our free cross-curricular computing resources and try six free units from our cross-curricular computing scheme.